Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
An. R. Acad. Nac. Farm. (Internet) ; 90(1): 125-135, Ene-Mar, 2024. tab, ilus
Artigo em Inglês | IBECS | ID: ibc-232338

RESUMO

The increasing prevalence of obesity among children and adolescent’s wide is a public health problem, resulting from the interaction of genetic, environmental and lifestyle factors. Obesity can lead to dysbiosis of the gut microbiota. This systematic review aims to gather scientific information available on the composition of gut microbiota in children/ adolescents with overweight/obesity. Research studies were identified through a scientific database (PubMed). The key words used were “Obese” OR “Overweight” AND “adolescent” OR “children” AND “microbiota”. Observational and intervention studies in children/adolescents having either overweight or obesity were included in this review, belonging to the last ten years – from December 2012 to October 2022. The initial search resulted in 409 references, 379 of them were excluded because the participants had major pathologies other than obesity or overweight. From the remaining articles, others were excluded due to not providing information on the number of participants, or not including data on microbiota composition. A total of 16 articles were selected: 12 observational studies and 4 intervention studies. Among the observational studies that compared overweight/obesity vs. normal weight or metabolically unhealthy obese vs. metabolically healthy obese children/adolescents, at least two studies found higher levels of Firmicutes, Proteobacteria, Bacteroidales, Adlercreutzia, Bifidobacterium, Escherichia coli, and Clostridium. Moreover, lower abundances of Bacteroidetes, Verrucomicrobia, Bacteroides, and Akkermansia were observed. Regarding intervention studies consisting of supplementation of oligofructose- enriched inulin and a weight reduction program, higher proportions of Actinobacteria were observed after the intervention. Clostridia was also found in higher abundances after interventions that used a combined strength and endurance training program and a weight reduction program. The findings suggest that obesity decreased microbiota diversity and increases species associated with inflammation. The results are consistent with previous studies in adults. This information will be useful for designing dietary interventions to prevent or reverse dysbiosis in individuals with obesity.(AU)


La creciente prevalencia de obesidad en niños y adolescentes es un problema de salud pública, resultado de la interacción de factores genéticos, ambientales y de estilo de vida. La obesidad puede provocar una disbiosis de la microbiota intestinal. Esta revisión sistemática tiene como objetivo recopilar información científica disponible sobre la composición de la microbiota intestinal en niños/adolescentes con sobrepeso/obesidad. Los estudios de investigación se identificaron a través de una base de datos científica (PubMed). Las palabras clave utilizadas fueron “obeso” O “Sobrepeso” Y “adolescente” O “niños” Y “microbiota”. En esta revisión se incluyeron estudios observacionales y de intervención en niños/adolescentes con sobrepeso u obesidad, pertenecientes a los últimos diez años, de diciembre de 2012 a octubre de 2022. La búsqueda inicial resultó en 409 referencias, de las cuales 379 fueron excluidas porque los participantes tenían patologías mayores además de la obesidad o el sobrepeso. De los artículos restantes, se excluyeron otros por no proporcionar información sobre el número de participantes o por no incluir datos sobre la composición de la microbiota. Se seleccionaron un total de 16 artículos: 12 estudios observacionales y 4 estudios de intervención. Entre los estudios observacionales que compararon el sobrepeso/obesidad frente al peso normal o los niños y adolescentes obesos metabólicamente no saludables frente a los obesos metabólicamente sanos, al menos dos estudios encontraron niveles más altos de Firmicutes, Proteobacterias, Bacteroidales, Adlercreutzia, Bifidobacterium, Escherichia coli y Clostridium. Además, se observaron menores abundancias de Bacteroidetes, Verrucomicrobia, Bacteroides y Akkermansia. En cuanto a los estudios de intervención consistentes en suplementación con inulina enriquecida con oligofructosa y un programa de reducción de peso, se observaron mayores proporciones de Actinobacteria después de la intervención. Los clostridios también se encontraron en mayor abundancia después de las intervenciones que utilizaron un programa combinado de entrenamiento de fuerza y resistencia y un programa de reducción de peso. Los hallazgos sugieren que la obesidad disminuye la diversidad de la microbiota y aumenta las especies asociadas con la inflamación. Los resultados son consistentes con estudios previos en adultos. Esta información será útil para diseñar intervenciones dietéticas que prevengan o reviertan la disbiosis en individuos con obesidad.(AU)


Assuntos
Humanos , Masculino , Feminino , Criança , Adolescente , Obesidade Pediátrica , Sobrepeso , Microbioma Gastrointestinal , Prevalência
2.
Int J Mol Sci ; 23(4)2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35216459

RESUMO

Naїve CD4+ T cells, which suffer different polarizing signals during T cell receptor activation, are responsible for an adequate immune response. In this study, we aimed to evaluate the behavior of human CD4+CD45RA+ T cells after in vitro activation by anti-CD3/CD28 bead stimulation for 14 days. We also wanted to check the role of the VIP system during this process. The metabolic biomarker Glut1 was increased, pointing to an increase in glucose requirement whereas Hif-1α expression was higher in resting than in activated cells. Expression of Th1 markers increased at the beginning of activation, whereas Th17-associated biomarkers augmented after that, showing a pathogenic Th17 profile with a possible plasticity to Th17/1. Foxp3 mRNA expression augmented from day 4, but no parallel increases were observed in IL-10, IL-2, or TGFß mRNA expression, meaning that these potential differentiated Treg could not be functional. Both VIP receptors were located on the plasma membrane, and expression of VPAC2 receptor increased significantly with respect to the VPAC1 receptor from day 4 of CD4+CD45RA+ T activation, pointing to a shift in VPAC receptors. VIP decreased IFNγ and IL-23R expression during the activation, suggesting a feasible modulation of Th17/1 plasticity and Th17 stabilization through both VPAC receptors. These novel results show that, without polarizing conditions, CD4+CD45RA+ T cells differentiate mainly to a pathogenic Th17 subset and an unpaired Treg subset after several days of activation. Moreover, they confirm the important immunomodulatory role of VIP, also on naїve Th cells, stressing the importance of this neuropeptide on lymphocyte responses in different pathological or non-pathological situations.


Assuntos
Células Th17 , Peptídeo Intestinal Vasoativo , Células Cultivadas , Humanos , Antígenos Comuns de Leucócito/metabolismo , RNA Mensageiro/metabolismo , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
3.
Biomedicines ; 9(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34944693

RESUMO

We aimed to evaluate the direct action of VIP on crucial molecules involved in human osteoclast differentiation and function. We also investigated the relationship between VIP serum levels and bone remodeling mediators in early arthritis patients. The expression of VIP receptors and osteoclast gene markers in monocytes and in vitro differentiated osteoclasts was studied by real-time PCR. NFATc1 activity was measured using a TransAM® kit. Osteoclastogenesis was confirmed by quantification of tartrate-resistant acid phosphatase positive multinucleated cells. OsteoAssay® Surface Multiple Well Plate was used to evaluate bone-resorbing activity. The ring-shaped actin cytoskeleton and the VPAC1 and VPAC2 expression were analyzed by immunofluorescence. We described the presence of VIP receptors in monocytes and mature osteoclasts. Osteoclasts that formed in the presence of VIP showed a decreased expression of osteoclast differentiation gene markers and proteolytic enzymes involved in bone resorption. VIP reduced the resorption activity and decreased both ß3 integrin expression and actin ring formation. Elevated serum VIP levels in early arthritis patients were associated with lower BMD loss and higher serum OPG concentration. These results demonstrate that VIP exerts an anti-osteoclastogenic action impairing both differentiation and resorption activity mainly through the negative regulation of NFATc1, evidencing its bone-protective effects in humans.

4.
Front Immunol ; 12: 687443, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262567

RESUMO

Galectin-1 is a ß-galactoside-binding lectin, ubiquitously expressed in stromal, epithelial, and different subsets of immune cells. Galectin-1 is the prototype member of the galectin family which shares specificity with ß-galactoside containing proteins and lipids. Immunomodulatory functions have been ascribed to endogenous galectin-1 due to its induction of T cell apoptosis, inhibitory effects of neutrophils and T cell trafficking. Several studies have demonstrated that administration of recombinant galectin-1 suppressed experimental colitis by modulating adaptive immune responses altering the fate and phenotype of T cells. However, the role of endogenous galectin-1 in intestinal inflammation is poorly defined. In the present study, the well-characterized acute dextran sulfate sodium (DSS)-induced model of ulcerative colitis was used to study the function of endogenous galectin-1 during the development of intestinal inflammation. We found that galectin-1 deficient mice (Lgals1-/- mice) displayed a more severe intestinal inflammation, characterized by significantly elevated clinical scores, than their wild type counterparts. The mechanisms underlying the enhanced inflammatory response in colitic Lgals1-/- mice involved an altered Th17/Th1 profile of effector CD4+ T cells. Furthermore, increased frequencies of Foxp3+CD4+ regulatory T cells in colon lamina propria in Lgals1-/- mice were found. Strikingly, the exacerbated intestinal inflammatory response observed in Lgals1-/- mice was alleviated by adoptive transfer of wild type Foxp3+CD4+ regulatory T cells at induction of colitis. Altogether, these data highlight the importance of endogenous galectin-1 as a novel determinant in regulating T cell reactivity during the development of intestinal inflammation.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Colite Ulcerativa/induzido quimicamente , Colo/metabolismo , Sulfato de Dextrana , Galectina 1/deficiência , Transferência Adotiva , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/transplante , Colite Ulcerativa/imunologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Colo/imunologia , Colo/patologia , Modelos Animais de Doenças , Galectina 1/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/transplante , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/imunologia , Células Th17/metabolismo
5.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208590

RESUMO

Osteoarthritis (OA) is the most common musculoskeletal disorder causing a great disability and a reduction in the quality of life. In OA, articular chondrocytes (AC) and synovial fibroblasts (SF) release innate-derived immune mediators that initiate and perpetuate inflammation, inducing cartilage extracellular matrix (ECM) degradation. Given the lack of therapies for the treatment of OA, in this study, we explore biomarkers that enable the development of new therapeutical approaches. We analyze the set of secreted proteins in AC and SF co-cultures by stable isotope labeling with amino acids (SILAC). We describe, for the first time, 115 proteins detected in SF-AC co-cultures stimulated by fibronectin fragments (Fn-fs). We also study the role of the vasoactive intestinal peptide (VIP) in this secretome, providing new proteins involved in the main events of OA, confirmed by ELISA and multiplex analyses. VIP decreases proteins involved in the inflammatory process (CHI3L1, PTX3), complement activation (C1r, C3), and cartilage ECM degradation (DCN, CTSB and MMP2), key events in the initiation and progression of OA. Our results support the anti-inflammatory and anti-catabolic properties of VIP in rheumatic diseases and provide potential new targets for OA treatment.


Assuntos
Condrócitos/metabolismo , Fibroblastos/metabolismo , Osteoartrite/metabolismo , Proteoma , Proteômica , Membrana Sinovial/citologia , Peptídeo Intestinal Vasoativo/metabolismo , Biomarcadores , Condrócitos/efeitos dos fármacos , Técnicas de Cocultura , Citocinas/metabolismo , Suscetibilidade a Doenças , Matriz Extracelular/metabolismo , Fibroblastos/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Osteoartrite/etiologia , Osteoartrite/patologia , Proteômica/métodos , Peptídeo Intestinal Vasoativo/farmacologia
6.
Cells ; 9(12)2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291545

RESUMO

Pro-inflammatory CD4+CD28- T cells are characteristic of immunosenescence, but also of several autoimmune/inflammatory diseases. Vasoactive intestinal peptide (VIP) acts as an anti-inflammatory and immunomodulatory mediator on these cells. Our objective was to study the mutual influence between senescent Th cells and VIP axis in early arthritis (EA), comparing with non-EA donors. We characterized the correlation between senescent Th cells and clinic parameters of EA as well as the behavior of senescent Th biomarkers by real-time PCR. Clinical data were systematically recorded at baseline and after 6 months of follow-up. The number of CD4+CD28- T cells measured by sorting is higher in patients who initially meet ACR classification criteria for rheumatoid arthritis (RA) compared to those who were classified as undifferentiated arthritis (UA). A slight positive correlation between EA CD4+CD28- T cells and CRP or ESR and a negative correlation with bone mineral density were found. Th senescent biomarkers in EA CD4+CD28- T cells were similar to donors, however some of them increased after 6 months of follow-up. VPAC receptors were analyzed by real-time PCR and immunofluorescence, and CD4+CD28- T cells showed higher expression of VPAC2 and lower of VPAC1, VPAC2 showing a significant increased expression in EA cells. Sorted CD4+CD28- T cells were in vitro expanded in presence of VIP, wherein VIP increased senescent biomarker CD27, while it diminished CD57 or NKG2 senescent biomarkers. Our study demonstrates for the first time the existence of a link between senescent Th cells and the VIP axis.


Assuntos
Artrite/metabolismo , Biomarcadores/metabolismo , Senescência Celular , Peptídeo Intestinal Vasoativo/metabolismo , Idoso , Artrite Reumatoide , Sedimentação Sanguínea , Densidade Óssea , Antígenos CD28/metabolismo , Linfócitos T CD4-Positivos/citologia , Antígenos CD57/metabolismo , Células Cultivadas , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Espanha
7.
Cells ; 9(1)2019 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-31877874

RESUMO

The extracellular matrix (ECM) is a complex and specialized three-dimensional macromolecular network, present in nearly all tissues, that also interacts with cell surface receptors on joint resident cells. Changes in the composition and physical properties of the ECM lead to the development of many diseases, including osteoarthritis (OA). OA is a chronic degenerative rheumatic disease characterized by a progressive loss of synovial joint function as a consequence of the degradation of articular cartilage, also associated with alterations in the synovial membrane and subchondral bone. During OA, ECM-degrading enzymes, including urokinase-type plasminogen activator (uPA), matrix metalloproteinases (MMPs), and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs), cleave ECM components, such as fibronectin (Fn), generating fibronectin fragments (Fn-fs) with catabolic properties. In turn, Fn-fs promote activation of these proteinases, establishing a degradative and inflammatory feedback loop. Thus, the aim of this review is to update the contribution of ECM-degrading proteinases to the physiopathology of OA as well as their modulation by Fn-fs.


Assuntos
Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Osteoartrite/metabolismo , Proteínas ADAMTS/metabolismo , Proteínas ADAMTS/fisiologia , Animais , Cartilagem Articular/metabolismo , Endopeptidases/metabolismo , Matriz Extracelular/fisiologia , Fibronectinas/fisiologia , Humanos , Metaloproteinases da Matriz/metabolismo , Metaloendopeptidases/metabolismo , Metaloendopeptidases/fisiologia , Osteoartrite/fisiopatologia , Peptídeo Hidrolases/metabolismo
8.
Int J Mol Sci ; 21(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861827

RESUMO

The neuroendocrine and immune systems are coordinated to maintain the homeostasis of the organism, generating bidirectional communication through shared mediators and receptors. Vasoactive intestinal peptide (VIP) is the paradigm of an endogenous neuropeptide produced by neurons and endocrine and immune cells, involved in the control of both innate and adaptive immune responses. Exogenous administration of VIP exerts therapeutic effects in models of autoimmune/inflammatory diseases mediated by G-protein-coupled receptors (VPAC1 and VPAC2). Currently, there are no curative therapies for inflammatory and autoimmune diseases, and patients present complex diagnostic, therapeutic, and prognostic problems in daily clinical practice due to their heterogeneous nature. This review focuses on the biology of VIP and VIP receptor signaling, as well as its protective effects as an immunomodulatory factor. Recent progress in improving the stability, selectivity, and effectiveness of VIP/receptors analogues and new routes of administration are highlighted, as well as important advances in their use as biomarkers, contributing to their potential application in precision medicine. On the 50th anniversary of VIP's discovery, this review presents a spectrum of potential clinical benefits applied to inflammatory and autoimmune diseases.


Assuntos
Doenças Autoimunes/imunologia , Inflamação/imunologia , Receptores Tipo II de Peptídeo Intestinal Vasoativo/imunologia , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/imunologia , Peptídeo Intestinal Vasoativo/imunologia , Animais , Diabetes Mellitus Tipo 1/imunologia , Humanos , Doenças Inflamatórias Intestinais/imunologia , Doenças Reumáticas/imunologia , Síndrome de Sjogren/imunologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-31695683

RESUMO

The axis comprised by the Vasoactive Intestinal Peptide (VIP) and its G protein-coupled receptors (GPCRs), VPAC1, and VPAC2, belong to the B1 family and signal through Gs or Gq proteins. VPAC receptors seem to preferentially interact with Gs in inflammatory cells, rather than Gq, thereby stimulating adenylate cyclase activity. cAMP is able to trigger various downstream pathways, mainly the canonical PKA pathway and the non-canonical cAMP-activated guanine nucleotide exchange factor (EPAC) pathway. Classically, the presence of VPACs has been confined to the plasma membrane; however, VPAC1 location has been described in the nuclear membrane in several cell types such as activated Th cells, where they are also functional. VPAC receptor signaling modulates a number of biological processes by tipping the balance of inflammatory mediators in macrophages and other innate immune cells, modifying the expression of TLRs, and inhibiting MMPs and the expression of adhesion molecules. Receptor signaling also downregulates coagulation factors and acute-phase proteins, promotes Th2 over Th1, stimulates Treg abundance, and finally inhibits a pathogenic Th17 profile. Thus, the VIP axis signaling regulates both the innate and adaptive immune responses in several inflammatory/autoimmune diseases. Rheumatoid arthritis (RA) is a complex autoimmune disease that develops on a substrate of genetically susceptible individuals and under the influence of environmental factors, as well as epigenetic mechanisms. It is a heterogeneous disease with different pathogenic mechanisms and variable clinical forms between patients with the same diagnosis. The knowledge of VIP signaling generated in both animal models and human ex vivo studies can potentially be translated to clinical reality. Most recently, the beneficial effects of nanoparticles of VIP self-associated with sterically stabilized micelles have been reported in a murine model of RA. Another novel research area is beginning to define the receptors as biomarkers in RA, with their expression levels shown to be associated with the activity of the disease and patients-reported impairment. Therefore, VPAC expression together VIP genetic variants could allow patients to be stratified at the beginning of the disease with the purpose of guiding personalized treatment decisions.

10.
J Immunol Res ; 2018: 6043710, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30155495

RESUMO

Genetic background, epigenetic modifications, and environmental factors trigger autoimmune response in rheumatoid arthritis (RA). Several pathogenic infections have been related to the onset of RA and may cause an inadequate immunological tolerance towards critical self-antigens leading to chronic joint inflammation and an imbalance between different T helper (Th) subsets. Vasoactive intestinal peptide (VIP) is a mediator that modulates all the stages comprised between the arrival of pathogens and Th cell differentiation in RA through its known anti-inflammatory and immunomodulatory actions. This "neuroimmunopeptide" modulates the pathogenic activity of diverse cell subpopulations involved in RA as lymphocytes, fibroblast-like synoviocytes (FLS), or macrophages. In addition, VIP decreases the expression of pattern recognition receptor (PRR) such as toll-like receptors (TLRs) in FLS from RA patients. These receptors act as sensors of pathogen-associated molecular pattern (PAMP) and damage-associated molecular pattern (DAMP) connecting the innate and adaptive immune system. Moreover, VIP modulates the imbalance between Th subsets in RA, decreasing pathogenic Th1 and Th17 subsets and favoring Th2 or Treg profile during the differentiation/polarization of naïve or memory Th cells. Finally, VIP regulates the plasticity between theses subsets. In this review, we provide an overview of VIP effects on the aforementioned features of RA pathology.


Assuntos
Anti-Inflamatórios/metabolismo , Artrite Reumatoide/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Diferenciação Celular , Humanos , Imunomodulação , Ativação Linfocitária
11.
Am J Pathol ; 186(9): 2449-61, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27449198

RESUMO

Current description of osteoarthritis includes the involvement of synovial inflammation. Studies contributing to understanding the mechanisms of cross-talk and feedback among the joint tissues could be relevant to the development of therapies that block disease progression. During osteoarthritis, synovial fibroblasts exposed to anomalous mechanical forces and an inflammatory microenvironment release factors such as a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) metalloproteinases that mediate tissue damage and perpetuate inflammation. We therefore studied the production of ADAMTS by synovial fibroblasts and their contribution to cartilage degradation. Moreover, we analyzed the implication of two mediators present in the osteoarthritis joint, IL-1ß as proinflammatory cytokine, and 45-kDa fibronectin fragments as products of matrix degradation. We reported that synovial fibroblasts constitutively express and release ADAMTS 4, 5, 7, and 12. Despite the contribution of both mediators to the stimulation of Runx2 and Wnt/ß-catenin signaling pathways, as well as to ADAMTS expression, promoting the degradation of aggrecan and cartilage oligomeric matrix protein from cartilage, fibronectin fragments rather than IL-1ß played the major pathological role in osteoarthritis, contributing to the maintenance of the disease. Moreover, higher levels of ADAMTS 4 and 7 and a specific regulation of ADAMTS-12 were observed in osteoarthritis, suggesting them as new potential therapeutic targets. Therefore, synovial fibroblasts provide the biochemical tools to the chronicity and destruction of the osteoarthritic joints.


Assuntos
Proteínas ADAMTS/biossíntese , Cartilagem Articular/metabolismo , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Interleucina-1beta/metabolismo , Osteoartrite/patologia , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Cartilagem Articular/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite/metabolismo , Reação em Cadeia da Polimerase , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia
12.
J Leukoc Biol ; 100(6): 1385-1393, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27381006

RESUMO

This study tested the hypothesis that vasoactive intestinal peptide (VIP) is able to modify the macrophage inflammatory profile, thus supporting its therapeutic role in autoimmune diseases. Macrophages are innate immune cells that display a variety of functions and inflammatory profiles in response to the environment that critically controls their polarization. Deregulation between the pro- and anti-inflammatory phenotypes has been involved in different pathologies. Rheumatoid arthritis (RA) is an autoimmune disease, in which macrophages are considered central effectors of synovial inflammation, displaying a proinflammatory profile. VIP is a pleiotropic neuropeptide with proven anti-inflammatory actions. As modulation of the macrophage phenotype has been implicated in the resolution of inflammatory diseases, we evaluated whether VIP is able to modulate human macrophage polarization. In vitro-polarized macrophages by GM-CSF (GM-MØ), with a proinflammatory profile, expressed higher levels of VIP receptors, vasoactive intestinal polypeptide receptors 1 and 2 (VPAC1 and VPAC2, respectively), than macrophages polarized by M-CSF (M-MØ) with anti-inflammatory activities. RA synovial macrophages, according to their GM-CSF-like polarization state, expressed both VPAC1 and VPAC2. In vitro-generated GM-MØ exposed to VIP exhibited an up-regulation of M-MØ gene marker expression, whereas their proinflammatory cytokine profile was reduced in favor of an anti-inflammatory function. Likewise, in GM-MØ, generated in the presence of VIP, VIP somehow changes the macrophages physiology profile to a less-damaging phenotype. Therefore, these results add new value to VIP as an immunomodulatory agent on inflammatory diseases.


Assuntos
Macrófagos/efeitos dos fármacos , Receptores Tipo II de Peptídeo Intestinal Vasoativo/fisiologia , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/fisiologia , Peptídeo Intestinal Vasoativo/farmacologia , Artrite Reumatoide/patologia , Células Cultivadas , AMP Cíclico/metabolismo , Citocinas/biossíntese , Citocinas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Imunofenotipagem , Inflamação , Ativação de Macrófagos/efeitos dos fármacos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/metabolismo , RNA Mensageiro/biossíntese , Receptores Tipo II de Peptídeo Intestinal Vasoativo/biossíntese , Receptores Tipo II de Peptídeo Intestinal Vasoativo/efeitos dos fármacos , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/biossíntese , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/efeitos dos fármacos , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/genética , Líquido Sinovial/citologia , Regulação para Cima
13.
J Cell Mol Med ; 20(4): 678-87, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26818776

RESUMO

ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family is known to play an important role in the pathogenesis of osteoarthritis (OA), working on aggrecan degradation or altering the integrity of extracellular matrix (ECM). Thus, the main purpose of our study was to define the role of vasoactive intestinal peptide (VIP) and corticotrophin-releasing factor (CRF), as immunoregulatory neuropeptides, on ADAMTS production in synovial fibroblasts (SF) from OA patients and healthy donors (HD). OA- and HD-SF were stimulated with pro-inflammatory mediators and treated with VIP or CRF. Both neuropeptides decreased ADAMTS-4, -5, -7 and -12 expressions, aggrecanase activity, glycosaminoglycans (GAG), and cartilage oligomeric matrix protein (COMP) degradation after stimulation with fibronectin fragments (Fn-fs) in OA-SF. After stimulation with interleukin-1ß, VIP reduced ADAMTS-4 and -5, and both neuropeptides decreased ADAMTS-7 production and COMP degradation. Moreover, VIP and CRF reduced Runx2 and ß-catenin activation in OA-SF. Our data suggest that the role of VIP and CRF on ADAMTS expression and cartilage degradation could be related to the OA pathology since scarce effects were produced in HD-SF. In addition, their effects might be greater when a degradation loop has been established, given that they were higher after stimulation with Fn-fs. Our results point to novel OA therapies based on the use of neuropeptides, since VIP and CRF are able to stop the first critical step, the loss of cartilage aggrecan and the ECM destabilization during joint degradation.


Assuntos
Proteínas ADAMTS/genética , Cartilagem Articular/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Fibroblastos/metabolismo , Osteoartrite/genética , Peptídeo Intestinal Vasoativo/metabolismo , Proteínas ADAMTS/antagonistas & inibidores , Proteínas ADAMTS/metabolismo , Idoso , Idoso de 80 Anos ou mais , Proteína de Matriz Oligomérica de Cartilagem/genética , Proteína de Matriz Oligomérica de Cartilagem/metabolismo , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Estudos de Casos e Controles , Subunidade alfa 1 de Fator de Ligação ao Core/antagonistas & inibidores , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Hormônio Liberador da Corticotropina/farmacologia , Endopeptidases/genética , Endopeptidases/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Fibronectinas/farmacologia , Regulação da Expressão Gênica , Glicosaminoglicanos/metabolismo , Humanos , Interleucina-1beta/farmacologia , Cápsula Articular/metabolismo , Cápsula Articular/patologia , Masculino , Pessoa de Meia-Idade , Osteoartrite/metabolismo , Osteoartrite/patologia , Transdução de Sinais , Peptídeo Intestinal Vasoativo/farmacologia , beta Catenina/antagonistas & inibidores , beta Catenina/genética , beta Catenina/metabolismo
14.
J Hazard Mater ; 305: 149-155, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26685061

RESUMO

Endosulfan is a Persistent Organic Pollutant insecticide still used in many countries. It is commercially available as mixtures of two diastereomers, α- and ß-endosulfan, known as technical grade endosulfan (TGE). A laboratory model based on the use of axenic plant cell cultures to study the removal and metabolization of both isomers from contaminated water matrixes was established. No differences were recorded in the removal of the two individual isomers with the two tested endemic plants, Grindelia pulchella and Tessaria absinthioides. Undifferentiated cultures of both plant species were very efficient to lower endosulfan concentration in spiked solutions. Metabolic fate of TGE was evaluated by analyzing the time course of endosulfan metabolites accumulation in both plant biomass and bioremediation media. While in G. pulchella we only detected endosulfan sulfate, in T. absinthioides the non-toxic endosulfan alcohol was the main metabolite at 48h, giving the possibility of designing phytoremediation approaches.


Assuntos
Asteraceae/metabolismo , Endossulfano/metabolismo , Inseticidas/metabolismo , Células Vegetais/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Especificidade da Espécie
15.
J Mol Med (Berl) ; 93(4): 457-67, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25430993

RESUMO

UNLABELLED: Our aim is to study the behavior of memory Th cells (Th17, Th17/1, and Th1 profiles) from early rheumatoid arthritis (eRA) patients after their in vitro activation/expansion to provide information about its contribution to RA chronicity. Moreover, we analyzed the potential involvement of vasoactive intestinal peptide (VIP) as an endogenous healing mediator. CD4(+)CD45RO(+) T cells from PBMCs of HD and eRA were activated/expanded in vitro in the presence/absence of VIP. FACS, ELISA, RT-PCR, and immunocytochemistry analyses were performed. An increase in CCR6(+)/RORC(+) cells and in RORC-proliferating cells and a decrease in T-bet-proliferating cells and T-bet(+)/RORC(+) cells were shown in eRA. mRNA expression of IL-17, IL-2, RORC, RORA, STAT3, and Tbx21 and protein secretion of IL-17, IFNγ, and GM-CSF were higher in eRA. VIP decreased the mRNA expression of IL-22, IL-2, STAT3, Tbx21, IL-12Rß2, IL-23R, and IL-21R in HD and it decreased IL-21, IL-2, and STAT3 in eRA. VIP decreased IL-22 and GM-CSF secretion and increased IL-9 secretion in HD and it decreased IL-21 secretion in eRA. VPAC2/VPAC1 ratio expression was increased in eRA. All in all, memory Th cells from eRA patients show a greater proportion of Th17 cells with a pathogenic Th17 and Th17/1 profile compared to HD. VIP is able to modulate the pathogenic profile, mostly in HD. Our results are promising for therapy in the early stages of RA because they suggest that targeting molecules involved in the pathogenic Th17, Th17/1, and Th1 phenotypes and targeting VIP receptors could have a therapeutic effect modulating these subsets. KEY MESSAGES: Th17 cells are more important than Th1 in the contribution to pathogenesis in eRA patients. Pathogenic Th17 and Th17/1 profile are abundant in activated/expanded memory Th cells from eRA patients. VIP decreases the pathogenic Th17, Th1, and Th17/1 profiles, mainly in healthy donors. The expression of VIP receptors is reduced in eRA patients respect to healthy donors, whereas the ratio of VPAC2/VPAC1 expression is higher.


Assuntos
Artrite Reumatoide/patologia , Células Th1/patologia , Células Th17/patologia , Peptídeo Intestinal Vasoativo/imunologia , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Células Cultivadas , Feminino , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Receptores de Peptídeo Intestinal Vasoativo/genética , Células Th1/imunologia , Células Th17/imunologia
16.
J Mol Neurosci ; 54(3): 512-25, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24805298

RESUMO

The cytokine microenvironment modulates CD4 T cell differentiation causing the shift of naïve CD4 T cells into different cell subsets. This process is also regulated by modulators such as vasoactive intestinal peptide (VIP), a neuropeptide with known immunomodulatory properties on CD4 T cells that exert this action through specific receptors, vasoactive intestinal peptide receptor (VPAC)1 and VPAC2. Our results show that the pattern of VIP receptors expression ratio is modified during Th17 differentiation. In this report, we evaluate the capacity of VIP to modulate naïve human cells into Th17 cells in vitro by analyzing their functional phenotype. The presence of VIP maintains the nonpathogenic profile of Th17-polarized cells, increases the proliferation rate, and decreases their Th1 potential. VIP induces the upregulation of the STAT3 gene interaction with the VPAC1 receptor during the onset of Th17 differentiation. Moreover, RAR-related orphan receptor C (RORC), RAR-related orphan receptor A (RORA), and interleukin (IL)-17A genes are upregulated in the presence of VIP through interaction with VPAC1 and VPAC2 receptors. Interestingly, VIP induces the expression of the IL-23R gene through interaction with the VPAC2 receptor during the expansion phase. This is the first report that describes the differentiation of naïve human T cells to Th17-polarized cells in the presence of VIP and demonstrates how this differentiation regulates the expression of the VIP receptors.


Assuntos
Fenótipo , Células Th17/efeitos dos fármacos , Peptídeo Intestinal Vasoativo/farmacologia , Proliferação de Células , Células Cultivadas , Citotoxicidade Imunológica , Humanos , Interleucina-17/genética , Interleucina-17/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/genética , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Células Th17/imunologia , Células Th17/metabolismo
17.
J Mol Neurosci ; 52(1): 10-7, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24254222

RESUMO

Rheumatoid arthritis (RA) and osteoarthritis are two rheumatic diseases whose progression is associated with a chronic synovitis. Fibroblast-like synoviocytes (FLS) have been shown to play a pivotal role in initiating and perpetuating inflammatory and destructive processes in the rheumatoid joint. Recently, the stimulating role of IL-22 has been reported on RA-FLS contribution to joint destruction by means of the increase of proliferation and matrix-metalloproteinase-1 (MMP-1) and alarmin S100A8/A9 production. Besides, mediators potentially present in inflamed joints have been shown to increase the expression of IL-22/IL-22R1 axis, amplifying the capacity of FLS to respond to IL-22 signalling. Since targeting cytokines that govern FLS activation would allow controlling their contribution to synovial inflammation, the present study was designed to analyze the potential immunoregulatory capacity of vasoactive intestinal peptide (VIP) to counterbalance IL-22 effects on FLS behavior. Our results showed that VIP is able to downregulate the augmented expression of IL-22 specific receptor in FLS subjected to a proinflammatory milieu. Moreover, this study revealed the ability of VIP to inhibit the IL-22 stimulatory effects on proliferation as well as on expression of both MMP-1 and alarmins in RA-FLS. The present findings reinforce the potential of this neuroimmunopeptide as a therapeutic agent in rheumatic diseases.


Assuntos
Artrite Reumatoide/metabolismo , Fibroblastos/efeitos dos fármacos , Interleucinas/metabolismo , Cápsula Articular/metabolismo , Receptores de Interleucina/metabolismo , Peptídeo Intestinal Vasoativo/farmacologia , Calgranulina A/genética , Calgranulina A/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Cápsula Articular/patologia , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Osteoartrite/metabolismo , Receptores de Interleucina/genética , Sinovite/metabolismo
18.
Rheumatology (Oxford) ; 52(12): 2177-86, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24056519

RESUMO

OBJECTIVES: Fibroblast-like synoviocytes (FLSs) are crucial players in the pathogenesis of synovitis in rheumatic diseases. Targeting FLS activation represents an approach to the development of therapeutic strategies. Our aim was to investigate whether the microenvironment of inflamed joints could modulate the expression of IL-22 and IL-22R1 on OA and RA FLSs. We also examined the effect of IL-22 on FLS activation as well as on their IL-17-related responses. METHODS: IL-22 and IL-22R1 expression was studied by RT-PCR and immunoblotting. Proliferation was measured by an ELISA kit. IL-17 receptors, p19IL-23 and alarmins were analysed by RT-PCR. IL-17 receptor expression was evaluated by flow cytometry. MMP1 and IL-23 were measured by ELISA. S100A8/A9 expression was detected by immunofluorescence and ELISA. Signal transducer and activator of transcription 3 (STAT3) phosphorylation was quantified using a cell-based ELISA kit. RESULTS: IL-22 and IL-22R1 were expressed constitutively in FLSs. We demonstrated that S100A8 and S100A9 were synthesized in FLSs. We reported that inflammatory mediators increased the expression of the IL-22/IL-22R1 axis, amplifying FLS activation. IL-22 enhanced FLS proliferation and up-regulated MMP1 and S100A8/A9 production. STAT3 phosphorylation was induced after IL-22 treatment and the stimulatory effect of IL-22 on S100A8/A9 was reduced after the activities of Janus kinase 2 (JAK2) and JAK3 were blocked. We showed an inhibitory action of IL-22 on IL-23 and IL-17RC expression in RA FLSs and on IL-17RA in OA FLSs. CONCLUSION: Therapies based on the pharmacological disruption signalling of IL-22 could be beneficial for the treatment of rheumatic diseases. The restricted expression of IL-22R1 to non-lymphoid cells could lead to a reduction of side effects mediated by immune responses.


Assuntos
Artrite Reumatoide/metabolismo , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Fibroblastos/metabolismo , Interleucinas/metabolismo , Osteoartrite/metabolismo , Artrite Reumatoide/patologia , Proliferação de Células , Regulação para Baixo , Fibroblastos/patologia , Humanos , Hiperplasia/patologia , Interleucinas/farmacologia , Janus Quinase 2/metabolismo , Janus Quinase 3/metabolismo , Metaloproteinases da Matriz/biossíntese , Fosforilação , Receptores de Interleucina/metabolismo , Receptores de Interleucina-17/metabolismo , Fator de Transcrição STAT3/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Receptores Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Regulação para Cima
19.
Neuroimmunomodulation ; 20(5): 274-84, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23880957

RESUMO

AIMS: To assess the contribution of fibroblast-like synoviocytes (FLS) to the inflammatory joint microenvironment under different pathogenic stimuli and their potential to respond to interleukin (IL)-17 and to determine whether the neuroimmunomodulatory vasoactive intestinal peptide (VIP) is able to modulate IL-17 receptor (IL-17R) and related cytokines. METHODS: The effect of proinflammatory cytokines [tumor necrosis factor α (TNFα) and IL-17] and Toll-like receptor (TLR) ligands [poly(I:C) and lipopolysaccharide (LPS)] on IL-17R expression and IL-12 and IL-23 production was studied in osteoarthritis (OA)- and rheumatoid arthritis (RA)-FLS, involved in Th1/Th17 differentiation. The effect of VIP was also determined. IL-17RA, IL-17RC, IL-12p35 and IL-23p19 expression was measured by real-time polymerase chain reaction. IL-12 and IL-23 protein levels were measured by ELISA in supernatant cultures. RESULTS: TNFα, LPS and poly(I:C) induced an increase in IL-17RA in RA-FLS, whereas TNFα, TNFα plus IL-17 and poly(I:C) enhanced IL-17RC transcripts in FLS. VIP diminished the upregulated expression of IL-17RA in RA-FLS following TNFα and poly(I:C). TNFα, LPS and poly(I:C) increased IL-12 and IL-23 levels in cells derived from patients presenting both pathologies. However, IL-17A DECREASED IL-12 AND AUGMENTED IL-23. VIP DECREASED IL-12P35 MRNA UPREGULATION BY POLY(I:C) AND IL-23P19 TRANSCRIPTS IN LPS-TREATED FLS. CONCLUSIONS: Inflammatory cytokines and TLR ligands modulate IL-17R, IL-12 and IL-23 possibly favoring the cross talk between FLS and Th1/Th17 cells. The ability of VIP to counteract the enhancing effect of proinflammatory molecules on IL-17R and the IL-12 family of cytokines corroborates and amplifies the beneficial effect of this endogenous neuroimmunopeptide in rheumatic diseases.


Assuntos
Artrite Reumatoide/patologia , Fibroblastos/metabolismo , Interleucina-12/metabolismo , Interleucina-23/metabolismo , Osteoartrite/patologia , Receptores de Interleucina-17/metabolismo , Análise de Variância , Células Cultivadas , Citocinas/farmacologia , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-12/genética , Interleucina-23/genética , Ligantes , Lipopolissacarídeos/farmacologia , Polidesoxirribonucleotídeos/farmacologia , RNA Mensageiro , Receptores de Interleucina-17/genética , Peptídeo Intestinal Vasoativo/farmacologia
20.
Immunol Cell Biol ; 90(2): 178-86, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21445087

RESUMO

CD4T helper cells are decisive in the struggle against pathogens and in maintaining immune homeostasis. Nevertheless, they also drive immune-mediated disease. Recently, emerging evidence suggests that seemingly committed Th cells possess plasticity and may convert into other types of effector cells. Vasoactive Intestinal Peptide (VIP) is an immunomodulator neuropeptide, which is able to promote or inhibit individually the differentiation or function of some T-helper subsets. We conducted ex vivo study with erythrocyte-depleted spleen cells from healthy mice to check the balance between cytokines and master regulators of different T-helper subsets. This neuropeptide adversely affected the differentiation and functionality phases of Th17 cells and had a negative influence on cytokines related to Th1 function, increasing Th17 cells over those of the Th1 cell subset. With respect to Th2 subsets, VIP augmented the interleukin (IL)-4/IL-9 mRNA ratio, and a negative correlation between IL-4 and IL-9 was observed in culture supernatants. VIP augmented Th2 relative to Th1 in cell subsets. VIP decreased the iTreg/Th17 balance. Regarding the induced T-regulatory (iTreg)/Th1 balance, VIP increased the presence of immunoregulatory cytokines in relation to IFNγ. Although additional studies are needed to clarify the role of VIP on the balance between cytokines and master regulators during T-helper differentiation, our data show that VIP reduces Th17/Th1 and Th1/Th2 ratios. However, the iTreg/Th17 ratio was differently counterbalanced, probably because of culture conditions. Finally, this is the first study showing that VIP also modulates Th2/Th9 and iTreg/Th1 ratios.


Assuntos
Ativação Linfocitária/imunologia , Células Th1/imunologia , Células Th17/imunologia , Células Th2/imunologia , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Diferenciação Celular/imunologia , Células Cultivadas , Interferon gama/metabolismo , Interleucina-4/genética , Interleucina-9/genética , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro/metabolismo , Baço/citologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Células Th1/citologia , Células Th1/metabolismo , Equilíbrio Th1-Th2 , Células Th17/citologia , Células Th17/metabolismo , Células Th2/citologia , Células Th2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...